1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
| """ Run inference on images, videos, directories, streams, etc.
Usage: $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640 """
import argparse import os import sys from pathlib import Path
import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn
FILE = Path(__file__).resolve() ROOT = FILE.parents[0] if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
from models.experimental import attempt_load from utils.datasets import LoadImages, LoadStreams from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \ increment_path, non_max_suppression, print_args, save_one_box, scale_coords, set_logging, \ strip_optimizer, xyxy2xywh from utils.plots import Annotator, colors from utils.torch_utils import load_classifier, select_device, time_sync
@torch.no_grad() def run(weights=ROOT / 'yolov5s.pt', source=ROOT / 'data/images', imgsz=640, conf_thres=0.25, iou_thres=0.45, max_det=1000, device='', view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=ROOT / 'runs/detect', name='exp', exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, ): source = str(source) save_img = not nosave and not source.endswith('.txt') webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://'))
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
set_logging() device = select_device(device) half &= device.type != 'cpu'
w = str(weights[0] if isinstance(weights, list) else weights) classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', ''] check_suffix(w, suffixes) pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) stride, names = 64, [f'class{i}' for i in range(1000)] if pt: model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device) stride = int(model.stride.max()) names = model.module.names if hasattr(model, 'module') else model.names if half: model.half() if classify: modelc = load_classifier(name='resnet50', n=2) modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() elif onnx: if dnn: net = cv2.dnn.readNetFromONNX(w) else: check_requirements(('onnx', 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) else: check_requirements(('tensorflow>=2.4.1',)) import tensorflow as tf if pb: def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs))
graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter(model_path=w) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() int8 = input_details[0]['dtype'] == np.uint8 imgsz = check_img_size(imgsz, s=stride)
if webcam: view_img = check_imshow() cudnn.benchmark = True dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 vid_path, vid_writer = [None] * bs, [None] * bs
if pt and device.type != 'cpu': model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) dt, seen = [0.0, 0.0, 0.0], 0 for path, img, im0s, vid_cap in dataset: t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() img = img / 255.0 if len(img.shape) == 3: img = img[None] t2 = time_sync() dt[0] += t2 - t1
if pt: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(img, augment=augment, visualize=visualize)[0] elif onnx: if dnn: net.setInput(img) pred = torch.tensor(net.forward()) else: pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) else: imn = img.permute(0, 2, 3, 1).cpu().numpy() if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype(np.uint8) interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale pred[..., 0] *= imgsz[1] pred[..., 1] *= imgsz[0] pred[..., 2] *= imgsz[1] pred[..., 3] *= imgsz[0] pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3
if classify: pred = apply_classifier(pred, modelc, img, im0s)
for i, det in enumerate(pred): seen += 1 if webcam: p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) save_path = str(save_dir / p.name) txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') s += '%gx%g ' % img.shape[2:] gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] imc = im0.copy() if save_crop else im0 annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
for *xyxy, conf, cls in reversed(det): if save_txt: xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() line = (cls, *xywh, conf) if save_conf else (cls, *xywh) with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: c = int(cls) label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True)) p1, p2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])) print(p1) print(p2) print(c) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
print(f'{s}Done. ({t3 - t2:.3f}s)')
im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1)
if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: if vid_path[i] != save_path: vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() if vid_cap: fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0)
t = tuple(x / seen * 1E3 for x in dt) print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights)
def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s6.pt', help='model path(s)') parser.add_argument('--source', type=str, default='F:\\yolo\\test.png', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 print_args(FILE.stem, opt) return opt
def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt))
if __name__ == "__main__": opt = parse_opt() main(opt)
|